List of Figures

Figure 1.1: The Floodplain Risk Management Process
Figure 3.1: Bega Valley Shire Council Local Government Area
Figure 5.1: Catchment Diagram
Figure 5.2: Perspective View of Catchment
Figure 5.3: Histogram of Elevations within Catchment
Figure 5.4: Bega Township
Figure 5.5: Jellat Jellat
Figure 5.6: Kalaru, Mogareeka and Tathra
Figure 5.7: Candelo Village
Figure 6.1: Locations of Rainfall Stations
Figure 6.2: Flow and Water Level Gauges Map
Figure 6.3: DTM Representation of the Confluence of Brogo and Bega Rivers North of Bega Based on the Council’s LIDAR Survey Data
Figure 6.4: Surveyed Control Cross-Sections Along Bega and Brogo Rivers
Figure 6.5: Candelo Creek Surveyed Cross Sections
Figure 6.6: Example where LIDAR Adequately Represented Channel
Figure 6.7: Example where LIDAR did not Adequately Represent Channel
Figure 6.8: Schematic of Cochrane Dam Weir – Plan and Section Views
Figure 6.9: Historic Aerial Photographs near Mogareeka (Source OEH)
Figure 6.10: 2010 Aerial Photograph near Mogareeka (Source Council)
Figure 7.1: Flood Extent Map by WRC, 1979
Figure 7.2: Flood Extent Map from Council’s GIS
Figure 7.3: River Styles in Bega/Brogo Catchment
Figure 8.1: Floods Greater than 4.6m by WRC – Bega River at North Bega (WRC, 1979)
Figure 8.2: Significant Floods at North Bega Gauge Since 1971
Figure 11.1: Flood Frequency Curve by WRC – Bega River at North Bega (WRC, 1979)
Figure 11.2: Flood Frequency Curve at Bega River – Annual Series Analysis
Figure 11.3: Flood Frequency Curve at Bega River – Partial Series Analysis
Figure 11.4: Flood Frequency Curve at Station 219025 – Brogo River @ Angledale
Figure 11.5: Flood Frequency Curve at Station 219003 – Bemboka River @ Morans Crossing
Figure 11.6: Flood Frequency Curve at Station 219017 – Double Creek near Brogo
Figure 11.7: Flood Frequency Curve at Station 219006 – Tantawangalo Creek @ Tantawangalo
Figure 11.8: Flood Frequency Curve at Station 219022 – Tantawangalo Creek @ Candelo Dam Site
Figure 11.9: Flood Frequency Curve at Station 219001 – Rutherford Creek @ Brown Mountain
Figure 12.1: Catchment Delineation
Figure 12.2a: Cleared and Natural Land Types within the catchment
Figure 12.2b: Cleared and Natural Land Types within the catchment
Figure 12.3: Land Zoning within the Catchment
Figure 13.1: Components of Elevated Water Levels on the Coast
Figure 13.2: Layout at Candelo Creek
Figure 14.1: Isohyetal Map showing Spatial Distribution of Rainfall for Feb 1971 Event
Figure 14.2: Isohyetal Map showing Spatial Distribution of Rainfall for Mar 2011 Event – ALL DATA
Figure 14.3: Isohyetal Map showing Spatial Distribution of Rainfall for Mar 2011 Event – FOR MODELLING
Figure 14.4: Isohyetal Map showing Spatial Distribution of Rainfall for Mar 1983 Event
Figure 14.5: Isohyetal Map showing Spatial Distribution of Rainfall for Feb 2010 Event
Figure 14.6: Pluviograph Stations Map
Figure 14.7: Pluviograph for the February 1971 Event – Station 70199
Figure 14.8: Pluviograph for the March 2011 Event – Station 219033
Figure 14.9: Pluviograph for the February 2010 Event – Station 219032
Figure 14.10: Revised Temporal Pattern for March 1983 Event
Figure 14.11: Example of Separation of Baseflow from Total Observed Flow (Feb 1971 Flood Event, Station 219003)
Figure 14.12: Effect of Stopboard Collapse at Cochrane Dam 10%AEP36 hour flood event
Figure 14.13: Effect of Stopboard Collapse at Cochrane Dam 1%AEP36 hour flood event
Figure 14.14: Flood Frequency Curve - St 219025 Brogo River
Figure 14.15: Flood Frequency Curve - St 219022 Tantawangalo Creek
Figure 14.16: Flood Frequency Curve - St 219003 Bemboka/Bega River
Figure 14.17: Frequency distribution of individual loss rates from values across Australia
Figure 14.18: March 2011 Event Flood Debris Tarraganda Lane
Figure 14.19: February 1971 Event - Flood Map with Locations of Floodmarks
Figure 14.20: March 2011 Event – Flood Map with Locations of Floodmarks
Figure 14.21: March 1983 Event – Flood Map with Locations of Floodmarks
Figure 14.22: February 2010 Event – Flood Map with Locations of Floodmarks
Figure 15.1: Design Rainfall Relationship – Intensity Duration Frequency
Figure 15.2: Site Specific Analysis – 1%AEP event
Figure 15.3: Default Ocean Level – 1%AEP event
Figure 15.4: Measurements of Global Mean Sea Level from Satellites from Jan 1993 to Dec 2012 , source: CSIRO (BoM, 2012)
Figure 15.5: Temporal Distribution of Annual Rainfall
Figure 15.6: Average Annual Rainfall across NSW
Figure 15.7: Debris and Blockages at Bridges
Figure 15.8: Water Surface Profiles along Bega River
Figure 15.9: Approximate Location of Proposed Upgrade
Figure 16.1: Check Locations Used in the Sensitivity Analysis
Figure 18.1: 1% AEP Flood Levels vs Time
Figure 18.2: Extent of inundation, Bega River upstream of Bega – Map 1
Figure 18.3: Extent of inundation, Bega River upstream of Bega – Map 2
Figure 18.4: Extent of inundation, Bega River upstream of Bega – Map 3
Figure 18.5: Extent of inundation, Brogo River upstream of Bega – Map 1
Figure 18.6: Extent of inundation, Brogo River upstream of Bega – Map 2
Figure 18.7: Extent of inundation, Bega Township – Map 1
Figure 18.8: Extent of inundation, Bega Township – Map 2
Figure 18.9: Example of communities accessing Tathra Road that may become isolated
Figure 18.10: Vulnerable communities - north side of Tathra Rd
Figure 18.11: Reedy Swamp Road – isolated communities
Figure 18.12: Extent of inundation, western edge of Betungka Swamp showing Wallagoot Lane submerged in 5% AEP
Figure 18.13: Extent of inundation, Blackfellows Lagoon Area
Figure 18.14: Extent of inundation, Mogareeka Area
List of Tables

Table 6.1: Years of Continuous Water level Records
Table 8.1: Recorded Flood Depths at gauging station Bega River at Bega (North Bye)
Table 10.1: Summary Responses for February 1971 Event
Table 10.2: Summary Responses for March 1983 Event
Table 10.3: Summary Responses for February 2010 Event
Table 10.4: Summary Responses for February 2011 Event
Table 10.5: Summary Responses for March 2011 Event
Table 10.6: Summary Responses for March 2012 Event
Table 11.1: Estimate of ARI of Recent Major Flood Events from Flood Frequency Analysis
Table 11.2: Estimate of ARI Flood Level Based on Results from Flood Frequency Analysis
Table 11.3: Estimate of ARI for Historic Floods from Flood Frequency Analyses Using Annual Series Analyses
Table 11.4: Estimate of Design ARI Gauge Flood Level Based on Results from Flood Frequency Analysis
Table 11.5: Top Ranked Historic Events recorded at Station 219900 – Bega River at Bega (North Bye)
Table 12.1: Percentage Imperviousness Applied Individual Land Zones
Table 14.1: Availability of Pluviograph Data for Calibration/Validation Events
Table 14.2: Revised Rainfall Totals for March 1983 Event
Table 14.3: Availability of Data at Adopted Streamflow Gauging Stations
Table 14.4: Water Level Recording Stations
Table 14.5: Water Level Recording Stations - Dam Sites
Table 14.6: Rating Curve Extrapolation
Table 14.7: Rainfall Losses from Calibration and Validation Runs
Table 14.8: Manning’s Roughness Coefficients from Calibration and Validation Runs
Table 14.9: Comparison with Documented Roughnesses
Table 14.10: Recommended Rainfall Loss Parameters for use in Design Events up to 1%AEP Event
Table 14.11: Recommended Basic Model Parameters
Table 14.12: Manning’s Roughness Coefficients for Modelling of Design Events
Table 14.13a: Calibration Results – February 1971 Event
Table 14.13b: Additional Calibration Results – February 1971 Event
Table 14.14: Calibration Results – March 2011 Event
Table 14.15a: Validation Results – March 1983 Event
Table 14.15b: Additional Validation Results – March 1983 Event
Table 14.16: Validation Results – February 2010 Event
Table 14.17: 2D Modelling Surface Roughness Coefficients from Calibration and Validation Runs
Table 14.18: Modelling Surface Roughness Coefficients for Design Event Runs
Table 14.19: Modelling Bridge Entry/Exit Losses for Design Event Runs
Table 14.20: Entrance Conditions for use in Design Events
Table 15.1: Geographic Rainfall Factors for Bega and Brogo Rivers Catchment
Table 15.2: Log Normal Intensities for Bega and Brogo Rivers Catchment
Table 15.3: Critical Durations for Various Design Flood Events based on Bega/ Brogo Rivers Junction
Table 15.4: Coincidental Flooding of Bega River from Catchment and Ocean flooding
Table 15.5: Catchment and Ocean Flooding Combinations
Table 15.6: Most Likely Block Levels (based on Debris Potential Alone)
Table 15.7: Block Levels (based on Likelihood and Consequences)
Table 15.8: Adopted Blockage Factors for Bridges within the Modelling Area
Table 15.9: Design Flood Levels at Flood Gauges within the Modelling Area
Table 15.10: Design Flood Levels at Hydraulic Structures
Table 15.11: Freeboard at Hydraulic Structures
Table 15.12: Duration of Bridge Overtopping in Design Events
Table 16.1: Scenarios Used in Sensitivity Analysis
Table 16.2: Peak Flowrates from Sensitivity Analysis of Rainfall Intensities
Table 16.3: Peak Flowrates from Sensitivity Analysis of Rainfall Losses
Table 16.4: Peak Flowrates from Sensitivity Analysis of Catchment Roughness (PERN)
Table 16.5: Sensitivity Analysis Results for Blockage Through Bridges – Velocities
Table 16.6: Sensitivity Analysis Results for Blockage Through Bridges – Upstream Water Levels
Table 16.7: Water Levels at Control Locations Used in Sensitivity Analysis
Table 16.8: Change in Water Levels at Control Locations Used in Sensitivity Analysis
Table 16.9: Velocities at Control Locations Used in Sensitivity Analysis
Table 16.10: Change in Velocities at Control Locations Used in Sensitivity Analysis
Table 17.1: Provisional Hazard Categories for People
Table 17.2: Provisional Hazard Categories for Vehicles
Table 18.1: Response Required for Different ERP Classifications (Source: OEH)
List of Appendices

APPENDIX A – DAM RATING CURVES

APPENDIX B – COMPONENTS IN SITE SPECIFIC ANALYSIS

APPENDIX C – DETAILED BLOCKAGE FACTORS AT BRIDGES

APPENDIX D – GENERAL CATCHMENT AND MODELLING INFORMATION
 Figure D1 - Modelling Area
 Figure D2 - Catchment Topography
 Figure D3 - Hydraulic Structures

APPENDIX E – CALIBRATION AND VALIDATION
 Figure E1 - Rainfall and Flow Gauging Stations
 Figure E2 - Simulated Versus Gauged Hydrographs
 Figure E3 - Modelling Surface Roughness Coefficients – Design Events

APPENDIX F – DESIGN FLOOD MAPPING
 Figure F1A - 10%AEP Flood Depths and Levels
 Figure F1B - 5% AEP Flood Depths and Levels
 Figure F1C - 2% AEP Flood Depths and Levels
 Figure F1D - 1% AEP Flood Depths and Levels
 Figure F1E - 0.2% AEP Flood Depths and Levels
 Figure F1F - Probable Maximum Flood (PMF) Flood Depths and Levels
 Figure F2A - 10% AEP Water Velocities
 Figure F2B - 5% AEP Water Velocities
 Figure F2C - 2% AEP Water Velocities
 Figure F2D - 1% AEP Water Velocities
 Figure F2E - 0.2% AEP Water Velocities
 Figure F2F - Probable Maximum Flood (PMF) Water Velocities

APPENDIX G – HYDRAULIC AND HAZARD CATEGORISATION
 Figure G1A - 10% AEP Hydraulic Categories
 Figure G1B - 5% AEP Hydraulic Categories
 Figure G1C - 2% AEP Hydraulic Categories
 Figure G1D - 1% AEP Hydraulic Categories
 Figure G1E - 0.2% AEP Hydraulic Categories
 Figure G1F - Probable Maximum Flood (PMF) Hydraulic Categories
Figure G2A - 10% AEP Flow Hazard
Figure G2B - 5% AEP Flow Hazard
Figure G2C - 2% AEP Flow Hazard
Figure G2D - 1% AEP Flow Hazard
Figure G2E - 0.2% AEP Flow Hazard
Figure G2F - Probable Maximum Flood (PMF) Flow Hazard

APPENDIX H – IMPACT OF SEA LEVEL RISE ON PRELIMINARY FLOOD PLANNING LEVELS
Figure H1 – Preliminary Flood Planning Levels under Existing Sea Levels (1% AEP+0.5m freeboard)
Figure H2 – Preliminary Flood Planning Levels under 2050 Sea Level Rise Projections (0.4m SLR)
Figure H3 – Preliminary Flood Planning Levels under 2100 Sea Level Rise Projections (0.9m SLR)

APPENDIX I – LIDAR SURVEY METADATA

APPENDIX J – CANDELO CREEK RESULTS

APPENDIX K – CANDELO CREEK MAPS (Depths, Velocities, Hydraulic Categories, Flow Hazard)